
EGOI 2025 Editorial - Wind Turbines

Task authors: Chur Zhe Yaw, Shi Wei Tia

July 16, 2025

Introduction

In this problem, we are given an undirected weighted graph and have to answer queries that ask for the
minimum cost of connecting each node to an arbitrary node in the range [li, ri].

Subtask 1 M = N − 1 and vi = ui + 1

In this subtask, the graph is a path. For a query [li, ri] the optimal solution is to add all edges (0, 1), (1, 2) . . . (li−
1, li) and (ri, ri+1), . . . (N − 2, N − 1). To compute this cost efficiently for each query, we can precompute it
using prefix sums. The runtime is O(N +Q)

Subtask 2 N,M,Q ≤ 2, 000 and
∑
(ri − ℓi + 1) ≤ 2, 000

In this subtask, the constraints are small enough for running a minimum spanning tree algorithm like Kruskal
or Prim for each query. To account for the fact that some nodes are connected to the shore for free, we
have to add a path of edges with weight 0 connecting the nodes in [li, ri] before running the MST (Minimum
Spanning Tree) algorithm. This solution runs in time O(Q ·M logM +

∑
(ri − ℓi + 1))

Subtask 3 ri = ℓi + 1

In this subtask, there are exactly two nodes connected to the shore for each query. That means, compared
to the MST, one edge can be removed for each query. The edge that should be removed is the heaviest edge
on the path from li to ri. To efficiently find this edge for every query, we can use binary lifting:

First, root the tree arbitrarily. Then for every node v, and for every path length p that is a power of two,
compute the heaviest edge that you encounter on the path from node v if you go p steps upwards. Also, save
the node that you get to if you go p steps upwards from v. Both values can be computed in time O(N log N)
using dynamic programming.

Then, to answer a query (li, ri), we can compute the heaviest edges on the path from li to the lowest
common ancestor (LCA) and from ri to the LCA: we can ”walk up” to the LCA in the same way as done in
the standard binary lifting LCA algorithm and take the max of the heaviest edges found on the way. The
runtime is O(N log N +Q log N)

Subtask 4 1 ≤ ci ≤ 2

This subtask can be solved using similar observations as the 100pt solution (see below), but with significant
simplifications. In particular, from the size of the interval [ℓ, r] we know how many connections need to be
payed for in total. Hence, we only need to find how many connections of cost 2 need to be used. This can
also be calculated by figuring out how many connected components there are in the graph consisting of only
the c = 1 edges for each query.

1



Subtask 5
∑
(ri − ℓi + 1) ≤ 400, 000

Suppose qi = [ℓi, ri] is one of the queries. The cost of this query is the cost of the MST of the original graph
minus the cost of some edges. In particular, exactly the edges in the MST that joined two sets which both
had a turbine from [ℓi, ri] are the ones in the MST that we don’t have to pay for. To solve the query, we
just have to find the cost of those edges.

We use Kruskal’s algorithm to construct MST of the input graph. We can slightly extend the union-find
/ disjoint-set-union data structure used by Kruskal’s algorithm to compute the MST. Before we do so, we
read in all the queries, and store at each node a list of queries it is part of. Since

∑
(ri − ℓi + 1) ≤ 400, 000,

we don’t store too many values. When merging two sets, we can also merge the list of query indices to store
at the union set. We do so by going over all the query indicies stored at the smaller set and: (1) check if they
are also stored in the larger set (if so, we can record this information and update the cost saving for that
query) and (2) add them to the list in the larger set. In total, this takes O(N logN) time, since whenever
a vertex is processed as part of a smaller set, it will after the union operation belong to a set at least twice
the size.

Alternative Solution. One can also process the each query in time O((ri − ℓi + 1) log n) time, using
Virtual Trees (see e.g., https://codeforces.com/blog/entry/140066).

Subtask 6 ℓi = 0

There are multiple ways of getting this subtask:

• Doing a simplified version of the 100pt solution (see below), where one can skip the fenwick tree since
all queries start at ℓ = 0.

• Solving offline dynamic MST, where you add 0 edges from i to i + 1 one at a time. See e.g, https:
//codeforces.com/blog/entry/105192 for how to solve the offline dynamic MST problem.

• Using Heavy Light Decomposition, one can compute the change between the query [0, r] and query
[0, r + 1] by figuring out which edge should no longer be used in the MST, and removing it.

We leave the details up to the reader to figure out :)

Full Solution

For full points on this problem, we need a few ideas and data structures.

Preprocessing. Let us first run Kruskal’s MST algorithm on the input graph, before processing any
queries.

While doing so, we can construct the following Kruskal tree with 2n− 1 nodes, consisting of:

• n leaf nodes, each representing a city,

• n− 1 internal nodes, each representing a power line used in the original MST.

To construct this tree:

1. Sort all power lines in non-decreasing cost.

2. Process each power line in order:

• If ui and vi are already connected, skip this power line.

2

https://codeforces.com/blog/entry/140066
https://codeforces.com/blog/entry/105192
https://codeforces.com/blog/entry/105192


• Otherwise, create a new internal node y and make it the parent of the roots of ui and vi.

• Then, set the root of ui and vi to y.

Observe that any power line not in the original MST will never be built in any scenario; hence we can
safely ignore those power lines.

Now, let yi be the node in the tree corresponding to power line i. It will be built if and only if yi has at
least one direct child such that all leaves in that child’s subtree do not have a power plant.

In other words, power line i will not be built if and only if both direct children of yi have at least one
power plant in their respective subtrees.

We will also preprosses this Kruskal tree so that we can answer LCA-queries in O(log n) or O(1) time.

Processing Queries. We process queries in increasing order of ri (sweep-line). We call a (leaf) node in
the Kruskal tree active if it has a smaller index than the current ri we are processing.

Consider an internal node u in the Kruskal tree, let ku be the maximum index of any active leaf in the
subtree rooted at u (this is at most ri). Also, say a and b are the direct children of u. Then the power line
corresponding to u will not be built if and only if both ka ≥ li and kb ≥ li. Indeed, this happens only if
both the subtree rooted at a and the one rooted at b have some windtubrine in the range [li, ri].

We now note that:
ku = max(ku.0, ku.1).

Thus, we need to compute the sum of c of power lines satisfying the above condition efficiently. The
critical observation is that this sum is equal to the following:

• the sum of wu.par − wu over all u such that ku ≥ li

Here, u can be an internal node or a leaf node. u.par denotes the parent of node u (if node u does not
have a parent, define wu.par = 0). If u is an internal node, wu is the cost of the power line corresponding to
u. If u is a leaf node, define wu = 0.

For this, we will maintain a Fenwick Tree (or a Segment Tree) indexed by ku to efficiently compute this
sum. In particular, we will maintain, for each ℓ, the sum of wu.par − wu over all u with ku ≥ ℓ.

We can maintain the values of ku efficiently while performing the sweep-line. When activating a leaf x,
the k-values for all nodes from that leaf to the root will be set equal to the index of the newly activated leaf.
Along this leaf-to-root path, there were several “chains” that share the same k-value.

Define a chain as a path as a maximal path from some internal node u to the leaf ku. We say the topmost
vertex on this chain is the chain’s root.

When activating a leaf node x, (currently the largest activated node), this will create a new chain from
the root of the tree all the way to x, and override any previous chains on this path, making them shorter.

We can observe that throughout the sweep-line on r, the total number of times chains will change roots is
O(N logN). This is since, at node u with two children subtrees of size s1 and s2, the chain passing through
u can be change direction at most min(s1, s2) times. The worst-case is in a balanced binary tree, where the
chain at the root changes direction N/2 times; the chains through a node at one level below the root changes
direction N/4 times and so on.

By the above observation we can afford to process each chain-root-change one by one (total O(N logN)),
and every time it happens update the affected indices in the Fenwick tree in O(logN) per update.

These chains can be maintained by simply storing the ku values for all chain-roots, and then use LCA-
queries to traverse the new root-to-leaf path downwards after an activation. Indeed, say we activate node x,
then we can find the last overlapping vertex on the intersection of the root-to-x path and the chain starting
at u by querying the LCA of x and ku. (Alternatively, a Heavy-Light Decomposition or other tree data
structures can help traverse these paths). We can then keep going on one of the childs of this LCA and
process the next chain, while updating the Fenwick tree and chain-roots.

Time complexity: O(M logM) to sort the edge, O(Q logN) for the Fenwick tree queries andO(N log2 N)
activating the leafs and updating the Fenwick tree.

3


