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Introduction

In this problem, we are given 2N points, evenly distributed on a circle. There are N straight lines that each
connect a unique pair of points. In each step, one endpoint of one line can be changed to another endpoint.
The goal is to output the shortest sequence of steps so that, afterward, all lines are parallel to each other,
and each endpoint is connected to exactly one line.

Line Notation

From now on, we will also refer to the line that connects the points i and j as the line (i, j).

Subtask 1: Line i is attached to the points i and i+ 1

In this subtask, every line connects points that are next to each other on the circle. If N is odd, then initially
no two lines are parallel, and we have to change all lines except for one (which we can choose arbitrarily).
Therefore, the minimum number of steps is N −1. If N is even, then for each line, there is exactly one other
line that is parallel to it. Therefore, we have to change all lines except for two, which takes at least N − 2
steps.

We can construct a sequence of steps that uses this number of moves (and thus is optimal). We can fix
an arbitrary line that we do not change, and make all other lines parallel to it. We choose this line to be the
line (0, 1). Therefore, for all 2 ≤ i ≤ 2N−1, the point i should be connected to the point 2N− i+1. Now we
can look at pairs of lines that we need to fix. There are ⌊N−1

2 ⌋ such pairs, and the ith pair (1 ≤ i ≤ ⌊N−1
2 ⌋)

contains the lines (2i, 2i + 1) and (2N − 2i, 2N − 2i + 1). We should change this pair of lines to the pair
(2i, 2N − 2i + 1) and (2i + 1, 2N − 2i). It is easy to do this using two steps. So in total, we use 2 · ⌊N−1

2 ⌋
steps, which is optimal.

Distinguishing between rotations

We can check if two lines are parallel by considering their endpoints. In particular, a line (a, b) and a line
(c, d) are parallel if and only if a + b ≡ c + d mod (2N). In other words, the expression a + b mod (2N)
specifies the rotation of the line. We have 2N possible line rotations overall, and we want all lines to have
the same rotation.

Subtask 2: At most two steps are needed

First, we observe that it is impossible that a single line is not parallel to the rest. Thus, either all lines are
parallel to each other (in which case the number of steps is 0) or all lines are parallel to each other except
for two (in which case the answer is 2). We can distinguish the cases by computing the rotation of every
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line, and by counting the number of times each rotation appears. In the case that two lines are not parallel
to the rest, these two lines can be fixed by swapping an endpoint of one line with an endpoint of the other
line. This can be seen in the figure below.
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Since there are only four possibilities for this, we can simply try all of them and choose the one that
makes all lines have the same rotation.

Note that similarly to subtask 1, the minimum number of steps is the number of lines (N), minus the
number of times the most common rotation appears. We want to make this work for the general case.

Constructing a solution given a fixed rotation

Given a fixed rotation, we say that a line is good if its rotation is the fixed one, otherwise we call it bad.
To make all lines parallel to the fixed rotation, just changing an arbitrary endpoint of a bad line to make it
good does not suffice; we have to be careful that no two lines share an endpoint after all changes are done.

We can avoid this by doing as follows: We pick a bad line ℓ1, and change one of its endpoints to make
it good. This new endpoint is occupied by another line ℓ2 that is currently bad. Again, we change this
endpoint (occupied by the two lines ℓ1 and ℓ2) such that line ℓ2 becomes good and does not share endpoints
with ℓ1. We repeat this process until the new endpoint is not occupied by any other line. After that, we
pick a new bad line and start the process again. We do this until all lines are good. This can be done either
iteratively or recursively (similar to a DFS), and takes O(N) time. The number of steps we used is N minus
the number of lines that initially had the fixed rotation.

Why does the construction always work?

While playing with examples might convince us that the previous construction always works (and this is
enough to solve the problem), it is not trivial to understand why. In particular, the unclear part is why we
will never reach a new endpoint that is occupied by another good line (which would cause us to get stuck).

One way to prove this is using graph theory. Suppose that we already chose the fixed rotation of the
parallel lines. Let’s model the problem with a bipartite graph – one side contains N nodes that represent
the lines in the initial configuration, and the other side contains N nodes that represent the good lines in
the final configuration. For each line ℓ in the initial configuration, we add two edges from the node that
represents it to the two nodes that represent the good lines to which ℓ can become after changing one of its
endpoints. Note that the two edges may connect the same pair of nodes, and this happens if and only if ℓ
is initially good. So, we have a bipartite graph with N nodes in each side, and the degree of each node is 2.
Our goal is to find a perfect matching in the graph.

We know that any graph that contains only nodes of degree 2 is a collection of disjoint cycles. Since the
graph is bipartite, we can infer that all cycles are of an even length!
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Now it becomes clear why the construction always works – each disjoint cycle consists of an even number
of edges, so if we take every other edge of a cycle, each node in it appears exactly once. Thus, doing so for
each cycle results in a perfect matching. Since each edge denotes an initial line and the final line it should
become (using one step), considering only the edges in the perfect matching we found results in a correct
optimal solution. Note that we have one special case – we do not change anything for cycles of length 2, as
they correspond to a line that is initially good.

Subtask 3: It is guaranteed that there is a solution where a line
connects the points 0 and 1

Since we know that every line should be parallel to the line that connects 0 and 1, we know our fixed rotation
and we can directly apply the previous construction to find an optimal sequence of steps in O(N) time.

Subtask 4: N ≤ 1000

In this subtask, the desired final rotation is not known. We can iterate over all possible rotations and apply
the previous algorithm, and take the shortest sequence we found. Since there are 2N rotations and an
iteration takes O(N) time, this algorithm takes O(N2) time.

However, there is something we haven’t considered: not all rotations are possible – for some rotations, it
is impossible to make all lines parallel to that rotation no matter the number of steps. In particular, this is
the case if and only if the value of the rotation is even (recall that the value of the rotation of a line (a, b) is
a+ b mod (2N)). This is because a line with an even rotation means that the number of points between its
two endpoints is odd. Such an example can be seen in the figure below, where it is impossible to make all
lines horizontal (or vertical).
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So we only check the N odd rotations, which gives us a correct algorithm with a running time of O(N2).

Full solution

For the full solution, we have to find the optimal rotation without simulating the construction every time.
We have already observed that we change each line at most once to become good, and we only change the
lines that are initially bad. So, for each fixed rotation, the number of steps is simply the number of bad lines
in the initial configuration.

To minimize this, we need to find the largest group of lines that initially have the same rotation. This can
be done by counting the number of lines of each rotation and choosing the most common one (the rotation
values are from 0 to 2N − 1 so we can simply use an array for this). Again, we have to be careful to consider
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just the odd rotations. If there is no line with an odd rotation, then all lines need to be changed (to an
arbitrary rotation). Together with the construction part from subtask 3, we get a solution in O(N) time.
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