
EGOI 2025 Editorial - IMO

Task Author: Elǐska Macáková

July 18, 2025

This problem was inspired by a situation that happened in a certain local math competition. All the results,
except one score of one contestant, who used an unusual solution for one of the problems, were published.
When she requested the organizers to finally grade it, they argued it would not change her final rank anyway,
as there was a big gap between her and the previous person in the ranklist.

The described solutions for the subtasks 1, 2, 3 are independent from the rest of the explanation. However,
if you wish to understand the full solution, you should start reading from the solution of subtask 4, as it
motivates the solutions for the remaining subtasks and defines some notions that will be reused.

Introduction

In this task, you are given the grading results of a competition per task and contestant, and want to reveal
the minimum number of scores such that the correct ranking can be determined.

Test group 1: N = M = 2, K = 1

You can solve the subtask with a case analysis or a bruteforce.

Test group 2: N = 2

Fix how many scores are revealed for the first and second contestant. Notice that, for the contestant who
is supposed to have better score, it is best to grade the problems where she has most points, while for the
other contestant, it is best to grade the problems where she has the least amount of points. Check whether
this results in a non ambigous comparison between the two contestants, and by checking all the possibilities
for how many scores are revealed for the two contestants, find the optimal answer. This can be implemented
in O(NM2), but asymptotically slower implementations can pass as well.

Test group 3: N ·M ≤ 16

Try all possibilities on which scores to hide and which scores to reveal, then compute the range of points each
contestant can have, and check if their ordering is unique (so the ranges may overlap only at the endpoints,
and even that only if the comparison according to the criteria in case of equal score evaluates correctly).
Time complexity O(2N ·M ·N2 ·M).

Test group 4: K = 1

The scores of every contestant are either 0 or 1. Let ci,0 be the number of 0s the ith contestant has and
ci,1 be the number of 1s the ith contestant has (observe that ci,0 + ci,1 = M for every i). When you

1

decide to reveal yi scores for the contestant i, the lower bound on her score, li, can be any of the numbers
max(0, yi− ci,0). . . . ,min(yi, ci,1), and the upper bound on her score, ri, is going to be equal to li+(M −yi).

This leads to a dynamic programming solution. Sort the contestants according to their final order, the
states of the dynamic programming will be (i, S, x) where:

• i = first how many contestants (according to results) have we determined the revealed scores for

• S = lower bound on the score of ith contestant according to our revealed scores

• x = how many scores have we hid so far. The number of revealed scores is then simply i ·M − x.

and dp[i][S][x] = 1 if there’s a way to do this and 0 otherwise. Transitions from dp[i][S][x] are done
by checking all possible li+1, ri+1 (according to the reasoning above), now if ri+1 < S or ri+1 = S and
contestant that should be i + 1st in the results had higher index original than the one who should be ith,
you can update dp[i + 1][li][x + (ri − li)] (ri+1 − li+1 is the number of scores that we should hide for i + 1
contestant if we want to have the lower bound li+1 and upper bound ri+1 on her score, according to the
revealed information).

To speed this up, notice that for a fixed i, x, the higher S we have, the better, so we can instead calculate
dp[i][x] = S, meaning, if we have chosen the scores for first i contestants, and we chose to hide x of them,
what is the maximum possible lower bound on score of ith contestant we might have. Now for the transitions,
we can first fix the number of scores to hide for i+ 1st contestant, hi+1, and then calculate highest ri+1 we
can have so that i+1 is certainly below i, and then try to update dp[i+1][x+hi+1] with li+1 = ri+1−hi+1.

How many scores can we hide? Since we’re hiding ri − li scores for contestant i and we know that
M ≥ l1 ≥ r1 ≥ l2 ≥ r2 ≥ l3 ≥ . . . ≥ ln ≥ 0 should hold, then we can get that the total number of hidden
scores =

∑
i ri− li ≤ M . So the number of scores we can hide is asymptotically lower than the total number

of scores, which is the motivation behind doing dynamic programming not on the number of revealed scores,
but on the number of hidden scores instead.

So we have N ·M states and M transitions for each, so the total time complexity is O(N logN +NM2)
(first factor comes from sorting the contestants by their final score first and original index second in the
beginning).

Test group 5: N ≤ 10, 000 and M,K ≤ 10

Similarly to previous subtask, the main idea is to precalculate for every contestant i the possible lower and
upper bounds on their score and then do dp[i][X].

Let’s analyze the situation for one contestant, i, and find out what can be the lower and upper bounds
on her score. First of all, observe that ri = li + hi ·K, where li, ri are the lower and upper bound on the
score of contestant i and hi is the number of hidden scores she has (li represents the situation where we
grade all the remaining hi problems with 0 and ri represents the situation where we grade all the remaining
hi problems with the full score, K).

We can introduce the following dynamic programming to help us find the possible li and ri - let

• j be the prefix of her scores considered (for each score, we are trying to decide whether to hide or
reveal it).

• S be the sum of the revealed scores so far

• x be the number of hidden scores so far

Then ti[j][S][x] is 1 if you can achieve these parameters and 0 otherwise. The transitions from a reachable
state ti[j][S][x] can be done in the following manner - if she has sj+1 points on her j + 1st problem, then if
we hide this score, we go to the state ti[j+1][S][x+1] and otherwise, we go to the state ti[j+1][S+sj+1][x].

In the end, the bounds li, ri are reachable if and only if ti[M][li][
ri−li
K] = 1. So we can iterate through

all reachable ti[M][S][x] to find all possible li, ri.

2

This precalculation can be done in the time complexity O(M3K) for each i, because we have O(M ·MK ·
M) states and O(1) transitions from each.

Now to solve the original problem, we may adapt the dynamic programming from the previous subtask.
The states will be still the pairs (i, x) of the length of the prefix and the number of hidden scores, the
values will be the maximum lower bound S we may have, and to transition from dp[i][x] = S, fix hi+1 and
li+1 such that the corresponding ri+1 is not too high (less or less than equal to S) and then try to update
dp[i+ 1][x+ hi+1] with li+1. In the beginning, initialize dp[0][0] with M ·K and everything else with −∞.

Once again, notice that since in the optimal solution it holds that M · K ≥ l1 ≥ r1 ≥ l2 ≥ r2 ≥ l3 ≥
. . . ≥ ln ≥ 0, and the number of hidden scores is equal to

∑
j≤i

rj−lj
K ≤ M ·K

K , so the second dimension of
the dynamic programming, x, can go only up to M .

Then the number of states is O(N ·M) and each of them leads to O(MK ·M) transitions, so the total
time complexity of this solution is O(N logN +NM3K).

Test group 6: no further constraints

To speed up the solution for the test group 5, we need to make one more optimization. Let mi be the score
of ith contestant if all her scores were revealed. Notice that in the optimal solution, for all i, it must hold
that mi+1 ≤ li, otherwise, if contestant i would get all 0s for her remaining problems and contestant i + 1
would get her true scores, they would be incorrectly ordered.

We can then modify the dynamic programming ti - let

• j be the prefix of scores of contestant i considered (for each score, we are trying to decide whether to
hide or reveal it).

• S be mi minus the sum of her hidden scores so far

• x be the number of hidden scores so far

then ti[j][S][x] is 1 if and only if it is possible to reach this state. And from this state you can do transitions
to ti[j + 1][S − sj+1][x + 1] if you decide to hide the j + 1st score with the value sj+1 and ti[j + 1][S][x]
otherwise. Initialize ti[0][mi][0] = 1 in the beginning and let everything else be equal to 0. The reachable
pairs li, ri can still be deduced from ti[M] just like before.

Now because of the condition that mi+1 ≤ li in any solution, it only makes sense to consider
pairs li, ri with mi+1 ≤ li, so we don’t have to consider states of ti with S < mi+1.

Therefore the time complexity of calculation of ti is now O(M · (mi −mi+1) ·M) with the right imple-
mentation, summing up to O(M3K) for all i.

Now to finish the problem, you can do the same dynamic programming as in test group 5, but you won’t
consider li lower than mi+1 when updating for every i, so the total time complexity of this step will be
O
(∑

i(mi −mi+1) ·M2
)
= O(M3K).

The total time complexity of this solution is O(N logN + M3K), enough to get full points under the
constraints N ≤ 20, 000, M,K ≤ 100.

3

